Comparison of areas in shadow from imaging and altimetry in the north polar region of Mercury and implications for polar ice deposits.
نویسندگان
چکیده
Earth-based radar observations and results from the MESSENGER mission have provided strong evidence that permanently shadowed regions near Mercury's poles host deposits of water ice. MESSENGER's complete orbital image and topographic datasets enable Mercury's surface to be observed and modeled under an extensive range of illumination conditions. The shadowed regions of Mercury's north polar region from 65°N to 90°N were mapped by analyzing Mercury Dual Imaging System (MDIS) images and by modeling illumination with Mercury Laser Altimeter (MLA) topographic data. The two independent methods produced strong agreement in identifying shadowed areas. All large radar-bright deposits, those hosted within impact craters ≥6 km in diameter, collocate with regions of shadow identified by both methods. However, only ∼46% of the persistently shadowed areas determined from images and ∼43% of the permanently shadowed areas derived from altimetry host radar-bright materials. Some sizable regions of shadow that do not host radar-bright deposits experience thermal conditions similar to those that do. The shadowed craters that lack radar-bright materials show a relation with longitude that is not related to the thermal environment, suggesting that the Earth-based radar observations of these locations may have been limited by viewing geometry, but it is also possible that water ice in these locations is insulated by anomalously thick lag deposits or that these shadowed regions do not host water ice.
منابع مشابه
Imaging Mercury's Polar Deposits during MESSENGER's Low-altitude Campaign.
Images obtained during MESSENGER's low-altitude campaign in the final year of the mission provide the highest-spatial-resolution views of Mercury's polar deposits. Images for distinct areas of permanent shadow within 35 north polar craters were successfully captured during the campaign. All of these regions of permanent shadow were found to have low-reflectance surfaces with well-defined bounda...
متن کاملThe Thermal Regim of “low-latitudinal” Cold Traps on Mercury
Introduction: Previous studies showed that areas with unusual properties near poles of Mercury are clusters of frozen volatiles in the polar craters. Signals reflected from these surface areas exhibited properties similar to those reflected from water ice and not from silicate rocks [1]. All these areas are crescentshaped and were identified with impact craters located in the polar areas of Mer...
متن کاملOrigin and characteristics of the Mars north polar basal unit and implications for polar geologic history
Building upon previous studies, we have used Mars Orbiter Camera and Mars Orbiter Laser Altimeter data to characterize in detail the newly discovered north polar basal unit. Lying stratigraphically between the polar layered deposits, from which it is likely separated by an unconformity, and the Vastitas Borealis Formation, this unit has introduced new complexity into north polar stratigraphy an...
متن کاملNear-Surface Temperatures on Mercury and the Moonand the Stability of Polar Ice Deposits
In order to assess the thermal stability of polar ice deposits, we present model calculated temperatures of flat surfaces and surfaces within bowl-shaped and flat-floored polar impact craters on Mercury and the Moon. Our model includes appropriate insolation cycles, realistic crater shapes, multiple scattering of sunlight and infrared radiation, and depthand temperature-dependent regolith therm...
متن کاملMeter-scale morphology of the north polar region of Mars.
Mars' north pole is covered by a dome of layered ice deposits. Detailed ( approximately 30 centimeters per pixel) images of this region were obtained with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter (MRO). Planum Boreum basal unit scarps reveal cross-bedding and show evidence for recent mass wasting, flow, and debris accumulation. The north polar laye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Icarus
دوره 280 شماره
صفحات -
تاریخ انتشار 2016